9. Differentiation

Name:
Class:
Date:
Mark / 15

1) Find the set of values of x for which $f(x)$ is an increasing function.
a) $\quad f(x)=2 x^{2}-5 x-1$
b) $\quad f(x)=2 x^{3}-21 x^{2}+72 x-7$
2) Find the set of values of x for which $f(x)$ is a decreasing function.

$$
f(x)=9 x+8 x^{2}+8
$$

3) Find the set of values of x for which $f(x)$ is an decreasing function.

$$
f(x)=2 x^{3}+15 x^{2}+24 x-9
$$

4) Find the least value of the following equation.

$$
f(x)=7 x^{2}+14 x+8
$$

5) Find the greatest value of the following equation.

$$
f(x)=3-12 x-6 x^{2}
$$

6) Find the least or greatest value of the following equation.

$$
f(x)=6+12 x-6 x^{2}
$$

7) Find the coordinates of the turning point of the following equation and state whether it is a minimum or maximum.
a) $f(x)=3-12 x-3 x^{2}$
b) $y=2 x+24 \sqrt{x}$
a) $y=x^{3}+3 x^{2}-9 x+8$
b) $y=16 x+\frac{9}{x}$
8) A minor sector MON of a circle with centre O and radius rcm , has a perimeter of 324 cm and an area of Acm^{2}.
a) Find an expression for the area of the sector, A , in terms of r in its simplest form.
b) Given that r varies, find the value of r for which A is a maximum.
c) Find the maximum area of the sector MON.
9) A large tank in the shape of a cuboid is to be made from $600 \mathrm{~m}^{2}$ of sheet metal. The tank has a horizontal base and no top. The height of the tank is x metres. Two of the opposite vertical faces are squares.
a) Find an expression for the volume, V , in terms of x in its simplest form.
b) Given that x varies, find the value of x for which V is a maximum.
c) Find the maximum volume of the tank.
10) A rectangular garden is fenced on three sides with the house forming the fourth side of the rectangle. Given that the total length of the fence is 88 m and x represents the distance from the house to the end of the garden.
a) Find an expression for the area of the garden, A , in terms of x in its simplest form.
b) Given that x varies, find the value of x for which A is a maximum.
c) Find the maximum area of the garden.
a) Find an expression for the volume, $\mathrm{V} \mathrm{cm}^{3}$, in terms of r in its simplest form.
b) Given that r varies, find the value of r for which V is a maximum.
c) Find the maximum volume of the tank.

Solutions for the assessment 9. Differentiation

1) a) $x>\frac{5}{4}$
b) $x<3, x\rangle 4$
2) $x<-\frac{9}{16}$
3) $-4<x<-1$
4) The least value is 1
5) The greatest value is 9
6) The greatest value is 12
7) a) The coordinates are $(-2,15)$ and it is a maximum point
b) The coordinates are $(36,216)$ and it is a maximum point
8) a) Minimum coordinates are $(1,3)$ and maximum are $(-3,35)$
b) Minimum coordinates are $\left(\frac{9}{16}, 25\right)$ and maximum $\operatorname{are}\left(-\frac{9}{16},-25\right)$
9) a) $\mathrm{A}=162 r-r^{2}$
b) $\mathrm{r}=81 \mathrm{~cm}$
c) $\mathrm{A}=6561$ cm^{2}
10) a) $V=200 x-\frac{2 x^{3}}{3}$
b) $x=10 \mathrm{~m}$
c) $V=1333 \mathrm{~m}^{3}$
11) a) $\mathrm{A}=88 x-2 x^{2}$
b) $=22 \mathrm{~m}$
c) $A=968 \mathrm{~m}^{2}$
12) a) $\mathrm{V}=75 \pi r-\pi r^{3}$
b) $=5 \mathrm{~cm}$
c) $\mathrm{V}=250 \pi \mathrm{~cm}^{3}$
