Δ	Difform	atiotion
У.	Differer	luation

Name:	Class:	Date:	Date:	
		Mark	/ 15	%
 1) Find the set of values of x for which f(x) is an increasing function. a) f(x) = 2x² - 5x - 1 				
b) $f(x) =$	$2x^3 - 21x^2 + 72x - 7$			
2) Find the set of values of x for which $f(x)$ is a decreasing function.				
f(x) = 9x	$x + 8x^2 + 8$			
3) Find the set of values of x for which $f(x)$ is an decreasing function.				
f(x) = 2	$x^3 + 15x^2 + 24x - 9$			
4) Find the least value of the following equation.				
$f(x) = 7x^2 + 14x$	+ 8			
5) Find the greatest value of the following equation.				
f(x) = 3 - 12x -	$6x^2$			
6) Find the least or g	reatest value of the following equ	ation.		[1]
f(x) = 6 + 12x -	$6x^2$			

7) Find the coordinates of the turning point of the following equation and state whether it is a minimum or maximum.

a)
$$f(x) = 3 - 12x - 3x^2$$
 [2]

b)
$$y = 2x + 24\sqrt{x}$$

8) Find the coordinates of the turning point of the following equation

a)
$$y = x^3 + 3x^2 - 9x + 8$$

b) $y = 16x + \frac{9}{x}$

9) A minor sector MON of a circle with centre O and radius r cm, has a perimeter of 324 cm and an area of A cm 2 .

a) Find an expression for the area of the sector, A, in terms of r in its simplest form.

b) Given that r varies, find the value of r for which A is a maximum.

c) Find the maximum area of the sector MON.

10) A large tank in the shape of a cuboid is to be made from 600 m^2 of sheet metal. The tank has a horizontal base and no top. The height of the tank is x metres. Two of the opposite vertical faces are squares.

a) Find an expression for the volume, V, in terms of x in its simplest form.

b) Given that x varies, find the value of x for which V is a maximum.

c) Find the maximum volume of the tank.

11) A rectangular garden is fenced on three sides with the house forming the fourth side of the rectangle. Given that the total length of the fence is 88 m and x represents the distance from the house to the end of the garden.

a) Find an expression for the area of the garden, A, in terms of x in its simplest form.

b) Given that x varies, find the value of x for which A is a maximum.

c) Find the maximum area of the garden.

12) A closed cylinder has total surface area of 150π .

- a) Find an expression for the volume, V cm ³, in terms of r in its simplest form.
- b) Given that r varies, find the value of r for which V is a maximum.
- c) Find the maximum volume of the tank.

Solutions for the assessment 9. Differentiation

1) a)
$$x > \frac{5}{4}$$
b) $x < 3, x > 4$ 2) $x < -\frac{9}{16}$ 3) $-4 < x < -1$

4) The least value is 1

5) The greatest value is 9

are $\left(-\frac{9}{16}, -25\right)$

6) The greatest value is 12

7) a) The coordinates are (-2, 15) and it is a maximum point

b) The coordinates are (36, 216) and it is a maximum point

8) a) Minimum coordinates are (1, 3) and maximum are (-3, 35)

9) a) $A = 162r - r^2$ b) r = 81 cm c) A = 6561 cm²

10) a) V =
$$200x - \frac{2x^3}{3}$$
 b) x = 10 m c) V = 1333 m³

b) Minimum coordinates are $\left(\frac{9}{16}, 25\right)$ and maximum

11) a) $A = 88x - 2x^2$ b) = 22 m c) $A = 968 \text{ m}^2$ **12**) a) $V = 75\pi r - \pi r^3$ b) = 5 cm c) $V = 250 \pi \text{ cm}^3$